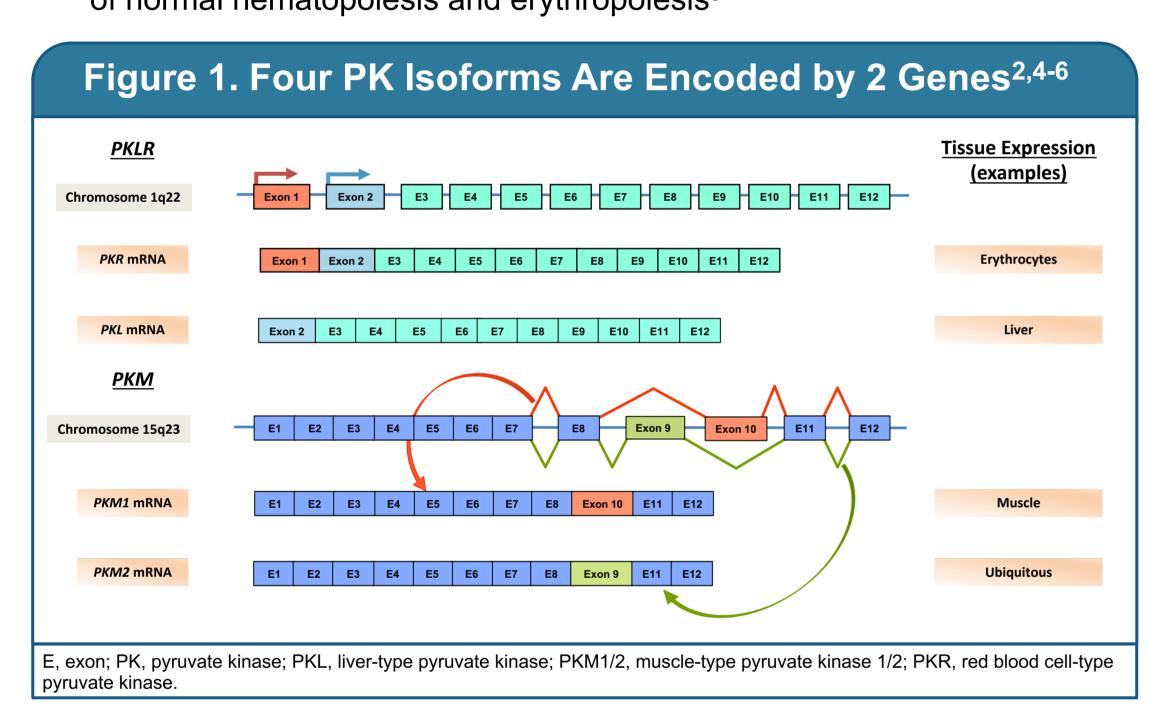
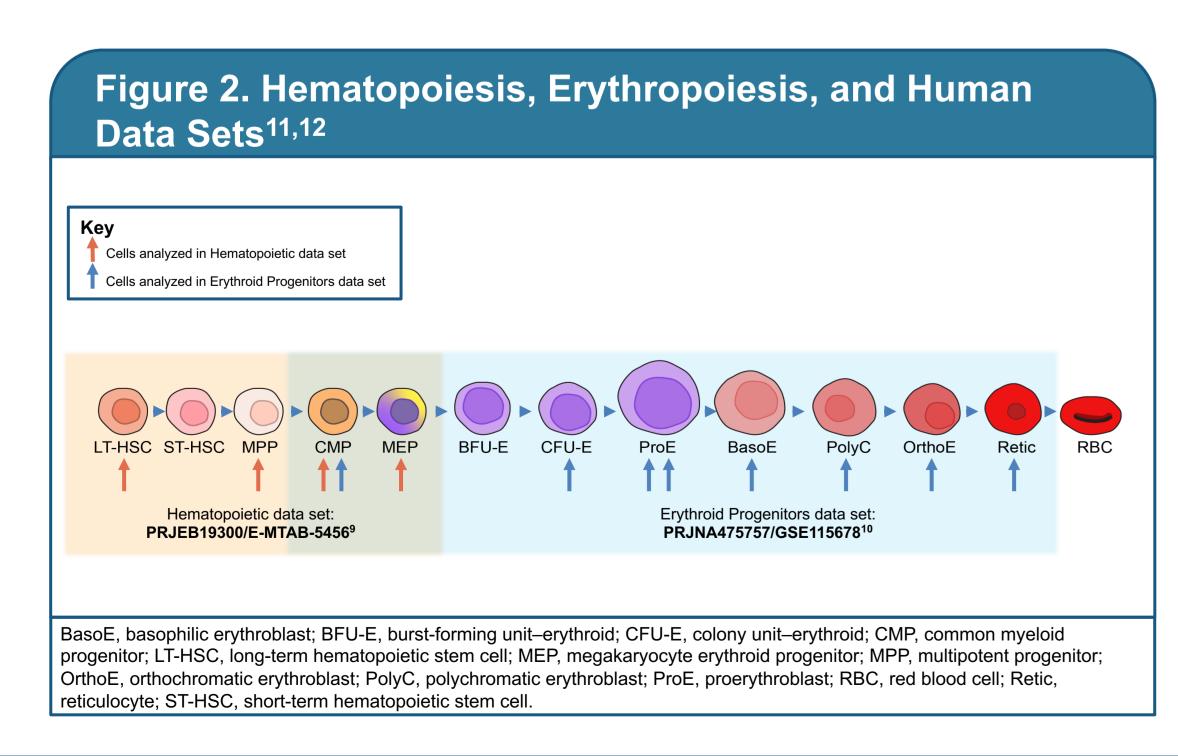
# PKM and PKR Expression During Hematopoiesis and Erythropoiesis

Erin Tsai, MS<sup>1</sup>, Leonardo Rivadeneyra, PhD<sup>1</sup>, Saliha Yilmaz, PhD<sup>1</sup>, Lenny Dang<sup>1</sup>, Megan Wind-Rotolo, PhD<sup>1</sup>


<sup>1</sup>Agios Pharmaceuticals, Inc., Cambridge, MA, USA

# **OBJECTIVE**


To understand relative expression and potential roles of PK isoforms during normal hematopoiesis and erythropoiesis

# BACKGROUND

- Pyruvate kinase (PK) is a key enzyme in the glycolytic pathway and thus essential for cell metabolism
- PK is needed to produce adenosine triphosphate (ATP), which is essential for meeting the energy demands of erythrocytes<sup>1</sup>
- 4 tissue-specific PK isoforms are encoded by 2 genes (Figure 1)<sup>2</sup>
- PKLR encodes the PKL and PKR isoforms through tissue-specific promoters
- **PKM** encodes the PKM1 and PKM2 isoforms through alternative splicing<sup>2</sup>
- mRNA expression of PK-associated genes varies throughout the stages of normal hematopoiesis and erythropoiesis<sup>3</sup>



- A lack of PK dysregulates hematopoiesis and erythropoiesis and can lead to such diseases as thalassemia, myelodysplastic syndrome-associated anemia, sickle cell disease, and PK deficiency<sup>7-10</sup>
- To better understand how to treat these diseases, it is helpful to understand PKM and PKR expression during normal hematopoiesis and erythropoiesis
- In this study, transcriptomes from hematopoietic and erythroid progenitors were evaluated, and mRNA levels of PKL, PKR, PKM1, and PKM2 were measured at different stages of hematopoiesis and erythropoiesis (Figure 2)



# METHODS

- Two RNA-sequencing (RNA-seq) data sets were obtained from public functional genomics data repositories
- Published method for generating ex vivo data set PRJEB19300/E-MTAB-5456<sup>11</sup>:
  - Early hematopoietic progenitors (CD34<sup>+</sup> cells depleted for those expressing lineage commitment markers [Lin-]) were isolated from umbilical cord blood (obtained from healthy donors)
- -Subsets were isolated, evaluated by flow cytometry, and verified by staining (**Table 1**)
- 100 cells were directly sorted into lysis buffer before further RNA-seq assay processing
- 4 replicate transcriptomes were run per cell type

# Table 1. Human Hematopoiesis Ex Vivo Data Set<sup>11</sup>

| Cell Type | Cell Surface Marker Expression |      |      |       |        |      |  |  |  |
|-----------|--------------------------------|------|------|-------|--------|------|--|--|--|
|           | CD34                           | CD90 | CD38 | CD123 | CD45RA | CD10 |  |  |  |
| HSC       | +                              | +    | _    | _     | _      | _    |  |  |  |
| MPP       | +                              | _    | _    | _     | _      | _    |  |  |  |
| СМР       | +                              | _    | +    | +     | _      | _    |  |  |  |
| MEP       | +                              | _    | +    | _     | _      | _    |  |  |  |

- Published method for generating in vitro data set PRJNA475757/GSE115678<sup>12</sup>:
- CD34<sup>+</sup> erythroblast populations were differentiated from healthy adult human donors using a 3-phase erythroid differentiation protocol<sup>13</sup>
  - Produced in 3 or 4 replicates using cultured cells from 2 or 3 healthy adult human donors
- Subpopulations enriched for 8 different stages of maturation were isolated using gated flow cytometry-activated cell sorting (FACS; Table 2)
- Erythroid surface markers used: CD71, CD235a, CD49d, and Band 3 (encoded by the *SLC4A1* gene)
- Each enriched subpopulation was processed using RNA-seq<sup>14</sup> 28 paired-end RNA-seq libraries were produced and sequenced

### Table 2. Human Erythropoiesis In Vitro Data Set<sup>12</sup>

| Cell Type | Cell Surface Marker Expression |        |        |        |  |  |  |  |  |
|-----------|--------------------------------|--------|--------|--------|--|--|--|--|--|
|           | CD71                           | CD235a | CD49d  | BAND3  |  |  |  |  |  |
| СМР       | Low                            | Low    | None   | None   |  |  |  |  |  |
| CFU-E     | High                           | Low    | None   | None   |  |  |  |  |  |
| ProE1     | High                           | Medium | None   | None   |  |  |  |  |  |
| ProE2     | High                           | High   | None   | None   |  |  |  |  |  |
| BasoE     | None                           | None   | High   | Low    |  |  |  |  |  |
| PolyC     | None                           | None   | High   | Medium |  |  |  |  |  |
| OrthoE    | None                           | None   | Medium | High   |  |  |  |  |  |
| Retic     | None                           | None   | Low    | High   |  |  |  |  |  |

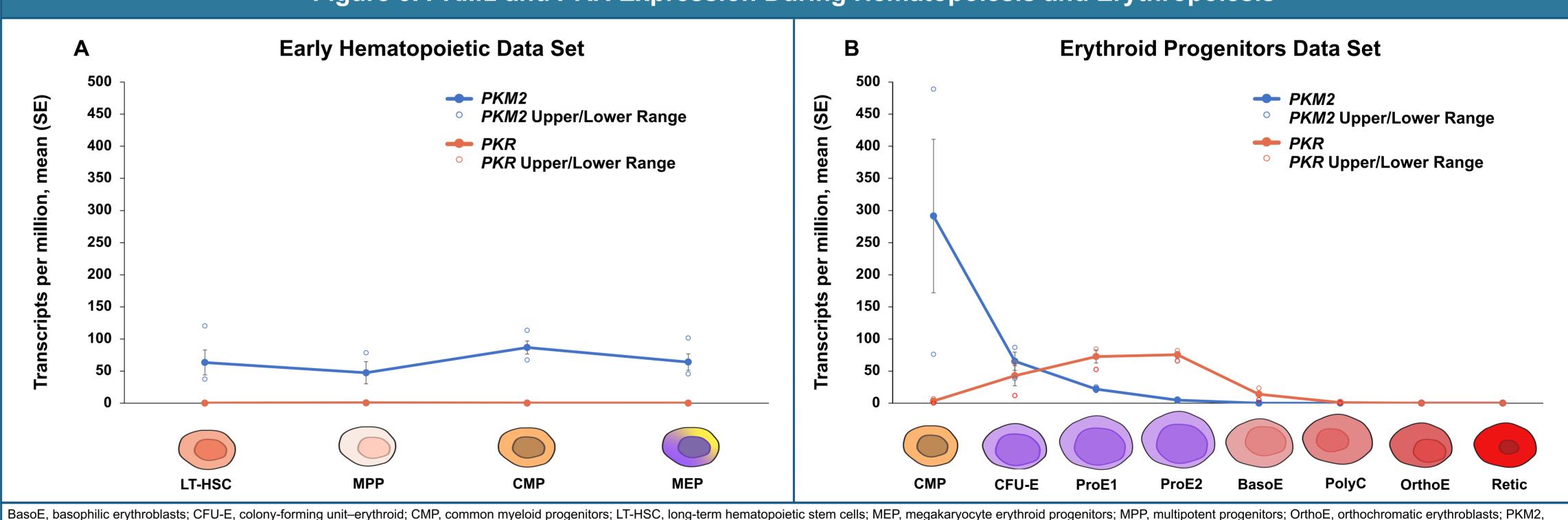
#### Processing of raw sequencing data

- Raw sequencing data from 2 public repositories were processed by FastQC and Trimmomatic for quality control and adapter trimming<sup>15,16</sup>
- The processed data were mapped to the transcriptome using Spliced Transcripts Alignment to a Reference (STAR)<sup>17</sup>
- Transcript quantification values were then calculated using RNA-Seq by Expectation-Maximization (RSEM)<sup>18</sup>
- RSEM-normalized data were pre-processed to provide a transcripts-permillion (TPM) matrix
- PKL, PKR, PKM1, and PKM2 mRNA expression data were visualized using RStudio<sup>19</sup>

# RESULTS

- Early hematopoietic data set
- PKR, PKL, and PKM1 mRNA expression was low-to-undetectable in all cell types (Table 3)
- PKM2 mRNA was present in early hematopoiesis and was expressed in LT-HSC, MPP, CMP, and MEP cell types (Figure 3A)
- Erythroid progenitors data set

(Figure 3B)


- PKM1 and PKL mRNA expression was low-to-undetectable in all cell types (**Table 3**)
- PKM2 and PKR mRNAs were both expressed in early erythropoiesis
- PKM2 mRNA was dominant in CMP and CFU-E cell types (Figure 3B) - PKR mRNA was dominant in ProE1, ProE2, and BasoE cell types
- Both *PKM2* and *PKR* mRNA expression decreased upon maturation (Figure 3B)

## Table 3. Expression of PKLR and PKM Genes in Hematopoiesis and Erythropoiesis<sup>a</sup>

|                     |       |       |       | Early   | Hemato   | ooietic [ | Data Set |      |      |       |        |       |
|---------------------|-------|-------|-------|---------|----------|-----------|----------|------|------|-------|--------|-------|
|                     | PKR   |       |       | PKL     |          | PKM1      |          |      | PKM2 |       |        |       |
|                     | min   | mean  | max   | min     | mean     | max       | min      | mean | max  | min   | mean   | max   |
| LT-HSC              | 0     | 0.02  | 0.03  | 0       | 0        | 0         | 0        | 0.18 | 0.71 | 37.31 | 63.39  | 120.3 |
| MPP                 | 0     | 0.43  | 1.69  | 0       | 0.01     | 0.02      | 0        | 0.37 | 1.47 | 0     | 47.38  | 78.52 |
| СМР                 | 0     | 0.01  | 0.04  | 0       | 0        | 0         | 0        | 0.09 | 0.21 | 67.31 | 86.70  | 113.3 |
| MEP                 | 0     | 0.09  | 0.26  | 0       | 0.01     | 0.04      | 0        | 0.79 | 2.05 | 45.47 | 64.03  | 101.3 |
|                     |       |       |       | Erythre | oid Prog | enitors   | Data Se  | t    |      |       |        |       |
| СМР                 | 0.15  | 3.36  | 7.14  | 0       | 0.10     | 0.29      | 0.8      | 1.02 | 1.19 | 76.3  | 291.36 | 488.9 |
| CFU-E               | 11.94 | 42.76 | 62.62 | 0       | 0.86     | 2.58      | 0        | 0.23 | 0.38 | 38.46 | 65.34  | 86.83 |
| ProE1               | 52.47 | 72.75 | 84.36 | 0       | 0.84     | 1.73      | 0        | 0    | 0    | 19.71 | 22.05  | 25.54 |
| ProE2               | 65.79 | 75.51 | 81.80 | 0       | 1.56     | 3.81      | 0        | 0    | 0    | 3.96  | 4.84   | 6.33  |
| BasoE               | 5.44  | 14.11 | 23.45 | 0       | 0.28     | 0.84      | 0        | 0    | 0    | 0     | 0.07   | 0.26  |
| PolyC               | 0.21  | 1.16  | 2.13  | 0       | 0.03     | 0.11      | 0        | 0    | 0    | 0     | 0.07   | 0.18  |
| OrthoE              | 0     | 0.09  | 0.20  | 0       | 0.02     | 0.03      | 0        | 0    | 0    | 0.13  | 0.26   | 0.39  |
| OrthoE and<br>Retic | 0     | 0.02  | 0.08  | 0       | 0.01     | 0.02      | 0        | 0    | 0    | 0.11  | 0.27   | 0.47  |

hematopoietic stem cells; MEP, megakaryocyte erythroid progenitors; MPP, multipotent progenitors; OrthoE, orthochromatic erythroblasts; PolyC, polychromatic erythroblasts; ProE, proerythroblasts; Retic, reticulocytes.

# Figure 3. *PKM2* and *PKR* Expression During Hematopoiesis and Erythropoiesis



muscle-type pyruvate kinase 2; PKR, red blood cell-type pyruvate kinase; PolyC, polychromatic erythroblasts; ProE, proerythroblasts; Retic, reticulocytes.

# CONCLUSIONS

- PKM1 and PKL transcripts were present at low-to-undetectable levels in both hematopoietic and erythroid progenitors
- PKM2 transcripts were present at early stages of hematopoiesis; PKR transcripts were present at low-to-undetectable levels
- Importantly, PKM2 and PKR transcripts were both expressed in early erythropoiesis and then decreased upon maturation
- These data describe levels of mRNA expression; protein levels were not assessed
- Similar studies of transcriptomes derived from patients with diseases that feature dysregulated hematopoiesis and ineffective erythropoiesis may inform the future design of effective PK-targeted pharmacotherapeutic approaches

**ACKNOWLEDGEMENTS** 

Writing and editorial support was provided by Symbiotix, LLC, funded by Agios Pharmaceuticals, Inc.

#### **DISCLOSURES**

All authors are employees and equity holders in Agios Pharmaceuticals, Inc.

#### REFERENCES

- Grace RF. et al. *Blood*. 2020:136(11):1241-1249.
- Dayton TL, et al. *EMBO Rep.* 2016;17(12):1721-1730. Wang YH, et al. Cell. 2014;158(6):1309-1323.
- Alguraishi M. et al. Free Radic Biol Med. 2019:143:176-192 Homo sapiens pyruvate kinase L/R (PKLR). Genbank
- Accession No. NM 000298, Updated May 17, 2023, Accessed May 19, 2023. https://www.ncbi.nlm.nih.gov/gene/5313. Homo sapiens pyruvate kinase M1/2 (PKM). GenBank
  - Accession No. NM 002654. Updated May 9, 2023. Accessed May 19, 2023. https://www.ncbi.nlm.nih.gov/gene/5315. Muncie HL Jr, et al. Am Fam Physician. 2009;80(4):339-344
- 8. Haferlach T. *Pathobiology*. 2019;86(1):24-29.

Hoss SE, et al. *Blood*. 2020;136(Supplement 1):14-15.

- 10. Al-Samkari H, et al. *Haematologica*. 2020;105(9):2229-2239.
- 11. Karamitros D. et al. *Nat Immunol*. 2018:19:85-97. 12. Ludwig LS, et al. Cell Rep. 2019;27(11):3228-3240.e7.
- 13. Hu J, et al. *Blood*. 2013;121(16):3246-3253. 14. Picelli S. et al. *Nat Protoc.* 2014:9(1):171-181.
- Babraham Bioinformatics website. www.bioinformatics babraham.ac.uk/projects/fastqc/. Accessed April 7, 2023 16. Usadel Lab website. www.usadellab.org/cms/?page=
- trimmomatic. Accessed April 7, 2023 17. Dobin A, et al. *Bioinformatics*. 2013;29(1):15-21.
- 18. Li B, Dewey CN. BMC Bioinformatics. 2011;12:323.
- 19. Loraine AE, et al. Methods Mol Biol. 2015;1284:481-501.