Characterizing the Clinical, Health-related Quality of Life and Economic Burden of Alpha-Thalassemia: A Systematic Literature Review and Evidence Gaps Assessment

Dr. Khaled M. Musallam¹, Louise Lombard², Keely Gilroy², Lydia Vinals³, Candice Tam⁴, Maria Rizzo⁴ ¹Thalassemia Center, Burjeel Medical City, Abu Dhabi, UAE; ²Agios Pharmaceuticals, Cambridge, MA, US; ³Cytel, Montreal, Canada; ⁴Cytel, London, UK

BACKGROUND

- Thalassemia is a congenital hemolytic anemia which can lead to clinical complications.¹ It is estimated that approximately 56,000 children worldwide are born with thalassemia every year²
- Thalassemia is commonly classified into alpha and beta subtypes based on the affected hemoglobin (Hb) chain(s)³
- More is known about the burden of beta-thalassemia (β-thalassemia), but a knowledge gap exists on the burden of alpha-thalassemia (α-thalassemia) and associated subtypes

OBJECTIVE

• To conduct a systematic literature review (SLR) to characterize the clinical (complications, treatment patterns, and mortality), health-related quality of life (HRQoL), and economic burden associated with α -thalassemia, and to report on evidence gaps

METHODS

• The SLR was conducted in accordance with the methodological and reporting requirements outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)⁴ and the Cochrane Handbook for Systematic Reviews of Interventions.⁵

Inclusion Criteria (PICOS)

Population: Adult and pediatric patients with alpha-thalassemia

ntervention: Any/none

Comparator: Any/none

Outcomes: clinical burden*, treatment patterns, HRQoL, healthcare resource utilization, costs and economic evaluations

Study Design: Real-world and observational studies as well as economic evaluations

Searches

- Searches: January 2010 to September 2021
- Electronic databases (via Ovid.com):
- MEDLINE
- Embase
- Cochrane Database of Systematic Reviews
- HTA Database
- NHS EED
- EconLit
- Conference abstracts: January 2017 to September 2021
- Bibliography lists of existing SLRs were also screened

Methodology

- References screened by two independent reviewers and discrepancies resolved by a third reviewer
- Data extracted by one reviewer and validated by another

Abbreviations: HRQoL, health-related quality of life; HTA, health technology assessment; NHS EED, National Health Service Economic Evaluation Database; SLR(s), systematic literature review(s)

RESULTS

Ten studies reported relevant data on α-thalassemia as identified from 7,881 search hits in thalassemia.⁶⁻¹⁵

*One study reported clinical burden and HCRU/cost outcomes. Abbreviations: HCRU, healthcare resource utilization; HRQoL, health-related quality of life.

All studies

• Among 10 studies that reported on HbH disease, three were in an α -thalassemia-only population,^{7,9,14} and seven were in a mixed (α -thalassemia and β -thalassemia) population reporting clinical data for $\dot{\alpha}$ -thalassemia separately (Table 1).^{6,8,11-13}

Table 1. Overview of Included Studies

Author, Year	Outcome	Country	α-thalassemia Genotype	β-thalassemia Genotype	Transfusion Phenotype*	Age (years)	N (total)	N (α-thalassemia)
Chaloemwong 2019 ⁶	Clinical	Thailand	Deletional and non-deletional HbH	HbE/β-thalassemia and β-thalassemia	NTDT AND TDT	≥15	112	10
Chan 2020 ⁷	Clinical	Hong Kong	Deletional and non-deletional HbH	NA	NTDT	≥18	80	80
Ekwattanakit 2017 ^{†8}	Clinical	Thailand	Deletional and non-deletional HbH	HbE/β-thalassemia and β-thalassemia	NTDT	≥18	57	23
Lal 2011 ⁹	Clinical HCRU	United States	Deletional and non-deletional HbH	NA	Not specified	0–72	86	86
Winichakoon 2015 ¹³	Clinical	Thailand	Deletional and non-deletional HbH	HbE/β-thalassemia and β-thalassemia	NTDT	≥15	100	54
Zhou 2014 ¹⁴	Clinical	China	Non-deletional HbH	NA	Not specified	≥18	50	50
Ricchi 2016 ¹¹	Clinical	Italy	Deletional HbH	β-thalassemia	NTDT	17–78	96	15
Ngim 2019 ¹⁰	Clinical	Malaysia	HbH, not further specified	HbE/β-thalassemia and β-thalassemia	NTDT AND TDT	≥18	69	2
Thavorncharoensap 2010 ¹⁵	HRQoL	Thailand	HbH, not further specified	HbE/β-thalassemia and β-thalassemia	NTDT AND TDT	5–18	315	130
Torcharus 2011 ¹²	HRQoL	Thailand	HbH, not further specified	HbE/β-thalassemia and β-thalassemia	TDT	2–18	49	5

*Transfusion phenotype of total study population. [†]With or without HbE trait

References: 1. Cappellini MD, Porter JB, Viprakasit V, Taher AT. A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? *Blood Rev.* 2018;32(4): 300-11. **2.** Eleftheriou A. Global Thalassaemia.org.cy/publications/global-thalassaemia-review-2021/ **3.** D.J.; W JBC. Historical perspectives: in The Thalassemia syndromes 4th edition. *Blackwell Scientific*, 2001 **4.** Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj*. Mar 29, 2021;372:n71. doi:10.1136/bmj.n71 **5.** Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. 2021. Updated February 2021. www.training.cochrane.org/handbook. **6.** Chaloemwong et al. *Ann Hematol*. 2019; 98(5): 1101-1110. **7.** Chan et al. *N Engl J Med*. 2011; 364(8): 710-8. **10.** Ngim et al. *Hemoglobin*. 2019; 43(2): 95-100. **11.** Ricchi et al. *Blood Transfus*. 2016; 14(6): 538-540. **12.** Torcharus et al. Southeast Asian J Trop Med Public Health. 2011; 42(4): 951-9. 13. Winichakoon et al. Anemia. 2015; 793025. 14. Zhou et al. Blood Transfus. 2014; 12(4): 471-8. 15. Thavorncharoensap et al. BMJ Blood Dis. 2010; 10:1.

Presented at the 64th ASH Annual Meeting and Exposition, December 10-13, 2022, New Orleans, LA, US

Clinical burden

- Complication rates among patients with α -thalassemia across all studies can be seen in Figure 1.
- These studies found that HbH and/or HbH/Constant Spring (CS) demonstrated a high clinical burden, with the highest prevalence of complications including iron overload (31% to 66%, three studies^{7-8,14}), hyperuricemia (60%, one study⁶), cholelithiasis (28% to 52%, three studies^{8,11,13}), musculoskeletal (0% to 33%, four studies ^{6,8,11,13}), hepatic (9%) to 28%, three studies^{7-8,13}), and endocrine (0% to 17%, three studies^{8,11,13}).

Figure 1. Complic	ation Rates Among	Patients with HbH	Disease
Cardiac	Cholelithiasis	Extramedullary hematopoiesis	Endocrine
6% 0%	28% 52% 40%	6% 0% 8%	4%* 17% 0% 11% 0%
Hepatic	Hyperuricemia	Iron overload (severity not specified)	Iron overload (moderate to severe)
13% 28% 9% 20%	60%	52% 66%	31%
Musculoskeletal	Pulmonary hypertension	Renal	Thrombotic events
0% 13%20% 0% 33%	6% 7% 0%	7%	0%4%* 2% 0%
Transfusion-related reactions			
0%	Mixed (deleti Deletional Hb Non-deletion	onal and non-deletional HbH) H al HbH	
*Percentages are from multip Notes: Cardiac = cardiomyop mellitus, hypogonadism, hyp musculoskeletal = gouty arth event; transfusion-related rea	ole studies. bathy, heart failure; endocrine = othyroidism; hepatic = advance nritis, osteopenia, osteoporosis; actions = serious infection	e abnormal glucose function, ac ed liver fibrosis, probable cirrho renal = nephrolithiasis; thromb	drenal insufficiency, diabetes osis, transaminitis; oosis = leg ulcers, thrombotic

HRQoL

Two pediatric studies reported on HRQoL in patients with HbH disease:

- Pediatric patients with TD α -thalassemia and β -thalassemia had similar total and subdomains of PedsQL scores, except for physical functioning, whereby patients with homozygous β-thalassemia had higher HRQoL than those with HbH disease, and patients with HbE/ β -thalassemia had the greatest HRQoL burden (p=0.008).¹²
- Another study in those with NTDT and TDT did not find differences in any PedsQL subdomain scores between patients with HbH disease, HbE/ β thalassemia, and homozygous β -thalassemia.¹⁵

HCRU

 One study on adult and pediatric patients with deletional HbH and HbH/CS found that patients with HbH/CS had a significantly increased number of annual clinic visits, by a factor of 1.7, and hospital admissions, by a factor of 3.9, vs. those with HbH (P<0.001).⁹

Treatment Patterns

• Treatment patterns among patients with α -thalassemia across all studies can be seen in Figure 2.

Transfusion		Iron chelation	Splenectomy
% (F) 3% (H)	56% (H) 87% (O)	11% 39% 52%	10%15%
	47% (O)	7% 6%	13% 40%* 50%*
F = frequent; O = o	ccasional; H = historical		

- Most patients with HbH and/or HbH/CS had historical (3% to 56%, two studies^{7,9}), or occasional transfusion (47% to 87%, two studies^{8,11}), iron chelation therapy (6% to 52%, five^{7,8,13,14}), and splenectomy (10% to 15%, three^{7,11,13}).
- When comparing by transfusion status, one study in unspecified HbH disease (N=50) did not find any significant difference in the rate of splenectomy between adults with TDT and NTDT (40% vs. 50.0%, respectively; p=0.566).¹⁰

LIMITATIONS

• There were limited data on patients with α -thalassemia, and where reported, data of interest on α -thalassemia were limited to patients with HbH disease. • Evidence on α -thalassemia was typically limited to small subgroups, with the sample sizes ranging from two to 130 patients.^{10,15}

CONCLUSIONS

- To our knowledge, this SLR was the first to investigate the clinical, HRQoL and economic burden of α -thalassemia
- The SLR was exhaustive and searched across thalassemia to identify relevant subgroup data reported in α-thalassemia
- Complications were prevalent across a range of conditions, signaling an unmet clinical need in patients with α -thalassemia including those with HbF
- Limited data, however, were found on HRQoL, and only in children and adolescents,
- but where reported, patients with HbH experienced similar HRQoL burden as those with β -thalassemia
- No economic evaluations were identified, and data were sparse for HCRU/costs
- This SLR highlights the need for further research to fully characterize the significant disease burden of α-thalassemia

Acknowledgments: Angeliki Kaproulia; Colleen Dumont

Disclosures: Khaled Musallam: Consultancy for: Celgene Corp (Bristol Myers Squibb), Agios Pharmaceuticals, Novartis, CRISPR Therapeutics, Vifor Pharma, Pharmacosmos; Lydia Vinals: Cytel Inc. - Current Employment; Keely Gilroy: Agios Pharmaceuticals - Current Employment and equity holder; Maria Rizzo: Cytel Inc. - Current Employment; Candice Tam: Cytel Inc. - Current Employment; Louise Lombard: Agios Pharmaceuticals - Current Employment and equity holder