Results from a phase 2, open-label, multicenter study of the oral pyruvate kinase activator mitapivat in adults with non-transfusion-dependent alpha- or beta-thalassemia

Kevin H.M. Kuo, MD,¹ D. Mark Layton, MB BS,² Ashutosh Lal, MD,³ Hanny Al-Samkari, MD,⁴ Joy Bhatia, MD,⁵ Bo Tong, PhD,⁵ Megan Lynch, MSN,⁵ Katrin Uhlig, MD,⁵ Elliott P. Vichinsky, MD³

¹Division of Hematology, University of Toronto, Toronto, Canada; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ³UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; ⁴Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁵Agios Pharmaceuticals, Inc., Cambridge, MA, USA

Disclosures

- **Kevin H.M. Kuo**: Agios, Alexion, Apellis, bluebird bio, Celgene, Pfizer, Novartis consultancy; Alexion, Novartis honoraria; Bioverativ membership on an entity's Board of Directors or advisory committees; Pfizer research funding
- D. Mark Layton: Agios, Novartis consultancy; Agios, Cerus, Novartis membership on an entity's Board of Directors or advisory committees
- Ashutosh Lal: bluebird bio, Celgene, Insight Magnetics, La Jolla Pharmaceutical Company, Novartis, Protagonist Therapeutics, Terumo Corporations research funding; Agios, Chiesi USA consultancy; Celgene, Protagonist Therapeutics membership on an entity's Board of Directors or advisory committees
- Hanny Al-Samkari: Agios, argenx, Dova, Novartis, Rigel, Sobi consultancy; Agios, Dova, Amgen research funding
- Joy Bhatia, Bo Tong, Megan Lynch, and Katrin Uhlig: Agios employees and shareholders
- Elliott P. Vichinsky: Agios, bluebird bio, Global Blood Therapeutics, Novartis, Pfizer consultancy and research funding
- This study was funded by Agios Pharmaceuticals, Inc. Medical writing assistance was provided by Onyx Medica, Knutsford, UK, funded by Agios Pharmaceuticals, Inc.

Mitapivat is an investigational, first-in-class, oral, small-molecule allosteric activator of PK

- ATP generation is essential for RBC functioning and stability^{1,3}
- Mitapivat activates PKR, which catalyzes the final step of glycolysis in RBCs²
- In studies in patients with PK deficiency or sickle cell disease, BID dosing with mitapivat improved anemia with an acceptable tolerability profile^{4–7}

ADP = adenosine diphosphate; ATP = adenosine triphosphate; BID = twice daily; DPG = diphosphoglyceric acid; FBP = fructose 1,6-bisphosphate; PEP = phosphoenolpyruvic acid; PG = phosphoglyceric acid; PK = pyruvate kinase; PKR = PK in RBCs RBC = red blood cell.

^{1.} Kung C et al. Blood 2017;130:1347—56; 2. Yang H et al. Clin Pharmacol Drug Dev 2019;8:246–59; 3. Valentini G et al. J Biol Chem 2002;277:23807–14; 4. Grace RF et al. EHA Congress 2020, Abstract EP1561; 5. Al-Samkari H et al. EHA Congress 2021. Abstract EHA-1873; 6. Glenthøj A et al. EHA Congress 2021. Abstract EHA-2112; 7. Xu JZ et al. ASH 2020. Abstract 681.

Hypothesis: mitapivat mechanism in thalassemia via activation of wild-type PKR

This phase 2, open-label, multicenter study investigated the efficacy and safety of mitapivat in non–transfusion-dependent α - and β -thalassemia

Key inclusion criteria:

- β-thalassemia ± α-globin gene mutations,
 HbE β-thalassemia, or α-thalassemia (HbH disease)
- Hb ≤ 10.0 g/dL
- Non–transfusion-dependent^b

Primary endpoint^c

Hb response, defined as increase of
 ≥ 1.0 g/dL from baseline at any time between
 Weeks 4–12, inclusive

Secondary and exploratory endpoints

 Sustained Hb response; delayed Hb response; markers of hemolysis and erythropoiesis; safety

Patient demographics and baseline characteristics

Patient demographics	All patients
and BL characteristics	(N = 20)
Completed 24-week core treatment period, n (%)	19 (95)
Sex, n (%)	
Male	5 (25.0)
Female	15 (75.0)
Age, median (range), years	44.0 (29–67)
Race, n (%)	
Asian	10 (50.0)
White	4 (20.0)
Black or African American	1 (5.0)
Native Hawaiian or other Pacific Islander	1 (5.0)
American Indian or Alaska Native	0
Other	3 (15.0)
Not reported	1 (5.0)
Thalassemia type, n (%)	
α-thalassemia	5 (25%)
β-thalassemia	15 (75%)
Hb baseline, median (range), g/dL	8.43 (5.13–9.80)
Total bilirubin, median (range), µmol/L	31.00 (8.6–90.0)
LDH, median (range), U/L	249.00 (126.0-513.0)
Erythropoietin, median (range), IU/L	79.00 (15.0–11191.0)

Genotype	Patients (N = 18) ^a
β-thalassemia, n (%) Intermedia Intermedia + α duplication Trait/phenotypic β-thalassemia intermedia	6 (33.3) 3 (16.7) 2 (11.1)
HbE/β-thalassemia, n (%) HbE/β ⁰	2 (11.1)
α-thalassemia, n (%) Deletional Non-deletional	2 (11.1) 3 (16.7)

Mitapivat met the primary endpoint of a Hb response in 80% of patients

Primary endpoint

Hb response:

≥ 1.0 g/dL increase in Hb concentration from BL at ≥ 1 assessments between Weeks 4–12 (inclusive)

Secondary endpoints: sustained Hb response and consistent increases in mean Hb

Sustained Hb response

Sustained Hb response:

A primary endpoint response during Weeks 4–12 and a ≥ 1.0 g/dL increase in Hb concentration at ≥ 2 assessments between Weeks 12 and 24

Mean Hb change

Mean Hb change:

Mean change from BL in Hb concentrations over a 12-week interval from Weeks 12 and 24

Improvements in Hb were rapid and maintained over the duration of the core treatment period

Mean (SD) time to first Hb increase of ≥ 1 g/dL among responders was 4.5 (3.2) weeks

Treatment with mitapivat improved markers of hemolysis and erythropoiesis in both α - and β -thalassemia

^{*}Non-responder (purple line). aWeek 24 data are missing for four of the five α-thalassemia patients, due to COVID-19.

NB: Predefined secondary endpoints, mean (SD) values of markers of hemolysis: bilirubin, LDH, and mean (SD) values of markers of erythropoietic activity: erythropoietin.

BL = baseline; EPO = erythropoietin; Hb = hemoglobin; IU = international units; LDH = lactate dehydrogenase; SD = standard deviation; U = units; μmol = micromole.

Improvements in ATP support mitapivat's proposed mechanism of action in thalassemia

Treatment dose	Visit	Mean (CV%) ATP change from baseline in blood, %
50 mg BID	Week 6 (n = 11)	78.2 (82.7)
100 mg BID	Week 8 (n = 12)	72.7 (67.9)
100 mg BID	Week 12 (n = 12)	86.7 (68.7)
100 mg BID	Week 24 (n = 8)	61.6 (62.7)

 Mean ATP percent increase from baseline was similar to that previously observed with mitapivat in healthy volunteers¹

Common treatment-emergent adverse events reported

Most common TEAEs (any grade in ≥ 15% of patients)	All patients (N = 20) Any grade, n (%)
Patients with events	17 (85.0)
Initial insomnia	10 (50.0)
Dizziness	6 (30.0)
Headache	5 (25.0)
Cough	4 (20.0)
Dyspepsia	4 (20.0)
Fatigue	4 (20.0)
Nasal congestion	4 (20.0)
Upper respiratory tract infection	4 (20.0)
Abdominal pain	3 (15.0)
Diarrhea	3 (15.0)
Ocular icterus	3 (15.0)
Pain	3 (15.0)
Pain in extremity	3 (15.0)
Abdominal distension	3 (15.0)
Nausea	3 (15.0)
Oropharyngeal pain	3 (15.0)

Safety summary

All patients (n = 20)	Patients, n (%)	TEAEs ^a
Treatment-related TEAEs	13 (65.0)	Initial insomnia (n = 10), diarrhea (n = 3), dyspepsia (n = 3), abdominal distension (n = 3), nausea (n = 3)
Grade ≥ 3 TEAEs	5 (25.0)	Initial insomnia (n = 1), arthralgia (n = 1), renal impairment (n = 1), anemia (n = 1), vertigo positional (n = 1)
Grade ≥ 3 treatment-related TEAEs	1 (5.0)	Initial insomnia (grade 3)
Serious TEAEs	1 (5.0)	Renal impairment (grade 3)
TEAEs leading to study drug:		
Dose reduction	3 (15.0)	Abdominal distension and dyspepsia (both grade 2), initial insomnia (grade 3), renal impairment (grade 3)
Interruption	1 (5.0)	Vertigo positional (grade 3)
Discontinuation	1 (5.0)	Renal impairment (grade 3) Patient discontinued after the Week 4 visit

- The adverse event leading to study drug discontinuation was not treatment related
- There were no deaths during the study

Patients with multiple adverse events within a PT are counted only once in that PT; for patients with multiple occurrences of an adverse event, the adverse event with the worst CTCAE grade is included in the summary; MedDRA version 23.0 and CTCAE version 4.03 were used.

Conclusions

- This is the first clinical study evaluating PKR activation as a therapeutic option in α- and β-thalassemia, and is the first drug trial aimed at evaluating treatment in α-thalassemia
- The study met its primary endpoint, and demonstrated a sustained Hb response and improvements in hemolysis and ineffective erythropoiesis in patients with α- and β-thalassemia
- Mitapivat was well tolerated; the safety profile was consistent with previous studies
 - 17 patients continued to the extension period of the study and, as of 29 April 2021, 16 patients remain on study drug
- Mitapivat, through activation of wild-type PKR, may represent a novel therapeutic option for patients with α- or β-thalassemia
 - Two pivotal phase 3 trials, ENERGIZE (NTDT) and ENERGIZE-T (TDT), for patients with α- or β-thalassemia will be initiated in 2021

Acknowledgements

- We would like to thank the patients taking part in this study
- This study was funded by Agios Pharmaceuticals, Inc.
- Editorial assistance was provided by Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.

Insert footnote

15