

Bone mineral density is stable in adults with pyruvate kinase deficiency receiving long-term treatment with mitapivat

Hanny Al-Samkari, MD,¹ Eduard J. van Beers, MD, PhD,² Wilma Barcellini, MD,³ Frédéric Galactéros, MD, PhD,⁴ Bertil Glader, MD,⁴ Bertil Glader, MD Peter Hawkins, PhD,¹⁰ Vanessa Beynon, MD,¹⁰ Keely Gilroy, PhD,¹⁰ Rachael F. Grace, MD¹¹ ¹⁰Agios Pharmaceuticals, Inc., Cambridge, MA, United States; ¹¹Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States

¹Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ²Van Creveldkliniek, Department of Internal Medical School, Boston, MA, United States; ²Van Creveldkliniek, Department of Internal Medical Center Utrecht, Vetherlands; ³Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ⁴Unité des Maladies Génétiques du Globule Rouge, CHU Henri Mondor, Créteil, France; ⁵Stanford University School of Medicine, Children's Hospital of Michigan, Detroit, MI, United States; ⁹University of Utah, Salt Lake City, UT, United States; ¹Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United States; ⁹University of Utah, Salt Lake City, UT, United States; ¹

BACKGROUND

- Pyruvate kinase (PK) deficiency is characterized by lifelong hemolytic anemia that can lead to both acute and long-term comorbidities and complications
- Among these is reduced bone mineral density (BMD), which can result in premature osteopenia, osteoporosis, and fractures¹
- A recent analysis of dual-energy X-ray absorptiometry (DXA) scans from 159 patients with PK deficiency showed that > 75% of adult patients had lower than normal BMD at a median age of 34 years²
- The mechanisms leading to BMD loss in PK deficiency are not well understood, but may involve:
- Marrow expansion³
- Genetic factors^{4,5}
- Endocrine dysfunction (eg, thyroid disease) 4,6
- Iron overload and its treatment^{4,5}
- Mitapivat is an investigational, first-in-class, allosteric activator of PK – In the DRIVE-PK study, mitapivat was previously shown to improve hemoglobin (Hb) and other hemolysis markers for up to 42 months in patients with PK deficiency (data cutoff: March 27, 2019)^{7–9}
- Mitapivat has mild aromatase inhibition effects; however, it is not clear whether this carries a negative impact on BMD in patients with PK deficiency
- Conversely, reducing hemolysis and improving ineffective erythropoiesis through PK activation may have a positive effect on BMD

OBJECTIVE

• To report BMD over time in adult patients with PK deficiency receiving long-term treatment with mitapivat in the DRIVE-PK study (NCT02476916)

METHODS

• DRIVE-PK is a phase 2, randomized, open-label, dose-ranging study of mitapivat in adults with PK deficiency who were not receiving regular transfusions^a (Figure 1)

Figure 1. DRIVE-PK study design

Key eligibility criteria:

- Patients \geq 18 years of age with diagnosed PK deficiency
- Not regularly transfused (\leq 3 units of red blood cells in prior 12 months, no transfusions in prior 4 months)
- Hb \leq 12.0 g/dL (if male) or \leq 11.0 g/dL (if female)

METHODS (CONTINUED)

 Patients who received mitapivat for > 12 months and had on-treatment DXA monitoring were included in this analysis (**Figure 2**)

Figure 2. DXA T-score assessment methods and classifications

- BMD was measured using DXA scans at baseline, every 6 months through month 30, and then annually
- Scans captured hip, spine, and femoral neck
- Scans were obtained and interpreted locally Decrease in BMD was identified on DXA scanning according to standard definitions
- Patients were classified as having normal BMD, osteopenia, or osteoporosis based on DXA T-scores
- DXA changes over time were assessed for patients receiving mitapivat > 12 months

BMD = bone mineral density; DXA = dual-energy X-ray absorptiometry.

RESULTS

• Of 52 patients enrolled in DRIVE-PK, 31 met the criteria for this analysis (**Table 1**) Table 1. Demographics and patient characteristics

Characteristic	Total (N = 31)
Median age at baseline (range), year	34 (19–61)
Sex, n (%)	
Female	10 (32)
Median Hb at baseline (range), g/dL	9.5 (7.3–12.3)
Median mitapivat treatment duration (range), year	3.8 (1.0–4.9)
Concomitant anti-osteoporosis medication, n (%)	2 (6.5)
Alendronic acid	1 (3.2)
Zoledronic acid	1 (3.2)

• T-scores remained mostly stable over time in this group of patients (**Figure 3**)

evaluable post-basline DXA T-score are included in the analysis; ^cTwo patients are included who were treated for > 12 months, but only have evaluable post-baseline T-score results up to 6 months: one patient is included who has no evaluable T-score results from baseline to 18 months. BL = baseline; BMD = bone mineral density; DXA = dual-energy X-ray absorptiometry.

Presented at European Hematology Association (EHA) Virtual Congress; 9–17 June 2021

RESULTS (CONTINUED)

baseline (**Table 2**)

Table 2. Shift of worst DXA T-score category across hip, spine, or femoral neck from baseline to last study assessment

Baseline		T-score at last assessment, n (%)			
Prior category ^a	n (%)	Normal BMD ≥ –1.0	Osteopenia > –2.5 to < –1.0	Osteoporosis ≤ –2.5	
Normal BMD ≥ –1.0	12 (38.7)	12 (38.7)	0	0	
Osteopenia > –2.5 to < –1.0	13 (41.9)	3 (9.7)	9 (29.0)	1 (3.2)	
Osteoporosis ≤ –2.5	5 (16.1)	0	1 (3.2)	4 (12.9)	

= Stable

received mitapivat for > 12 months (365 days); only patients with evaluable post-baseline DXA T-score are included in the analysis. ote: One patient did not have baseline DXA, so the table shows results for 30/31 patients 3MD = bone mineral density; DXA = dual-energy X-ray absorptiometry

CONCLUSIONS

- **BMD** at baseline
- No fractures were reported during the study period
- in these patients
- extension study

By decreasing hemolysis and ineffective erythropoiesis, mitapivat may have the potential to halt the pathophysiologic process that leads to osteopenia and osteoporosis in patients with PK deficiency

Acknowledgements

We would like to thank the patients taking part in this study Editorial assistance was provided by Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.

Disclosures

This study was funded by Agios Pharmaceuticals Inc. Author conflict of interest disclosures as follows: Hanny Al-Samkari: Agios, argenx, Novartis, Dova, Rigel, Sobi – Consultancy; Agios, Amgen, Dova – research funding; Eduard J. van Beers: Agios – advisory board member; Agios, Novartis, Pfizer, and RR Mechatronics – research funding; Wilma Barcellini: Agios, Alexion, and Novartis – honoraria; Agios – research funding; Bioverativ, Incyte – board member and advisory committee member; **Frédéric Galactéros**: Addmedica – board member and advisory committee member; Bertil Glader: Agios – consultancy; Kevin H. M. Kuo: Agios, Alexion, Apellis, bluebird bio, Celgene, Pfizer, Novartis – consultancy; Alexion, Novartis - honoraria; Bioverativ - membership on an entity's Board of Directors or advisory committees; Pfizer - research funding; D. Mark Layton: Agios, Novartis - consultancy; Agios, Cerus, Novartis - membership on an entity's Board of Directors or advisory committees; Yaddanapudi Ravindranath and Hassan Yaish: No affiliations; Rachael F. Grace: Agios, Novartis, and Pfizer – research funding; Dova – member of Board of Directors and advisory committees; Yan Dong, Feng Tai, Peter Hawkins, Vanessa Beynon, and Keely Gilroy: Agios – employees and shareholders

References

- 1. Grace RF et al. Br J Haematol 2019;184:721–34. 2. Al-Samkari H et al. Blood 2020;136(Suppl 1):30–2.
- 9. Grace RF et al. *N Engl J Med*. 2019;381:933–44.

• The majority of patients remained within the same BMD category as they were at

= Worsened = Improved

DXA scanning revealed that BMD was mostly stable over time in adult patients with PK deficiency receiving long-term treatment with mitapivat for up to 56 months, despite a substantial degree of reduced

Mitapivat does not appear to promote progression of BMD abnormalities

• Longer-term BMD data will continue to be collected as part of this ongoing

3. Basu et al. Br J Haematol 2009;144:807. 4. Rossi et al Haematologica 2014;99:1876-84. 5. Chan et al. Clin Radiol 2000;55:610-4. 6. Grace RF et al. Blood 2018;131:2183–92. 7. Yang H et al. Clin Pharmacol Drug Dev 2019;8:246–59. 8. Kung C et al. Blood 2017;130:1347–56.