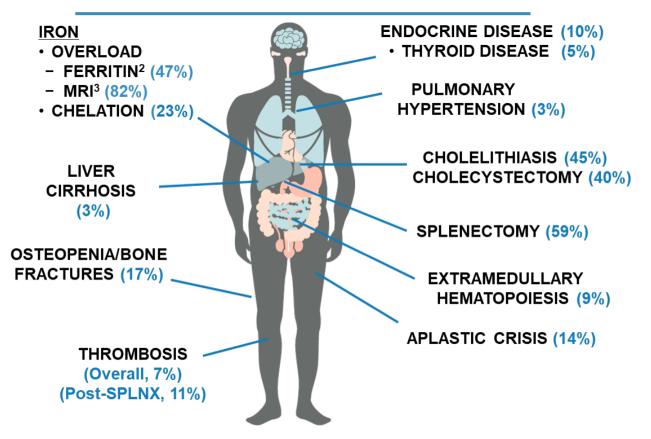
ACTIVATE-T: A Phase 3, Open-label, Multicenter Study Of Mitapivat In Adults With Pyruvate Kinase Deficiency Who Are Regularly Transfused

Andreas Glenthøj, MD,¹ Eduard J. van Beers, MD,² Hanny Al-Samkari, MD,³ Vip Viprakasit, MD, DPhil,⁴ Kevin H. M. Kuo, MD,⁵ Frédéric Galactéros, MD, PhD,⁶ Satheesh Chonat, MD,⁷ John Porter, MA, MD, FRCP, FRCPath,⁸ Sarah Gheuens, MD, PhD,⁹ Vanessa Beynon, MD,⁹ Emily Xu, PhD,⁹ Peter Hawkins, PhD,⁹ Erin Zagadailov, PharmD, MS⁹ Abdulafeez Oluyadi, PharmD,⁹ Wilma Barcellini, MD,¹⁰

¹Department of Hematology, Rigshospitalet, Copenhagen, Denmark; ²Van Creveldkliniek, Department of Internal Medicine, University Medical Center Utrecht, Utrecht, Netherlands; ³Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ⁴Siriraj Hospital, Mahidol University, Bangkok, Thailand; ⁵Division of Hematology, University of Toronto, Toronto, Canada; ⁶Unité des Maladies Génétiques du Globule Rouge, CHU Henri Mondor, Créteil, France; ⁷Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States; ⁸Department of Haematology, University College London Cancer Institute, London, United Kingdom; ⁹Agios Pharmaceuticals, Inc., Cambridge, MA, United States; ¹⁰Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

This study was funded by Agios Pharmaceuticals, Inc.

Presented at European Haematology Association (EHA) Virtual Congress; 9 – 17 June 2021


Disclosures

- This study was funded by Agios Pharmaceuticals, Inc.
- Author conflict of interest disclosures as follows:
 - Andreas Glenthøj: Agios, bluebird bio, Celgene, Novartis consultancy and advisory board member; Alexion research grant; Novo Nordisk honoraria
 - Eduard J. van Beers: Agios advisory board member; Agios, Novartis, Pfizer, RR Mechatronics research funding
 - Hanny Al-Samkari: Agios, argenx, Dova, Novartis, Rigel, Sobi consultancy; Agios, Dova, Amgen research funding
 - Vip Viprakasit: Bristol-Myers Squibb, Novartis consultancy, honoraria, research funding, speakers bureau; Agios, Ionis, La Jolla Pharmaceuticals, Protagonist Therapeutics, Vifor Pharma – consultancy, research funding
 - Kevin H. M. Kuo: Agios, Alexion, Apellis, bluebird bio, Celgene, Pfizer, Novartis consultancy; Alexion, Novartis honoraria; Bioverativ membership on an entity's Board of Directors or advisory committees; Pfizer – research funding
 - Frédéric Galactéros: Addmedica board membership or advisory committee
 - Satheesh Chonat: Agios, Alexion, Novartis, Global Blood Therapeutics, and Novartis consultancy/research funding
 - John Porter: No affiliations
 - Sarah Gheuens, Vanessa Beynon, Emily Xu, Peter Hawkins, Erin Zagadailov, and Abdulafeez Oluyadi: Agios employees and shareholders
 - W. Barcellini: Agios, Alexion, Novartis honoraria; Agios research funding; Bioverativ, Incyte board membership or advisory committee

Pyruvate kinase deficiency – disease overview

- Underrecognized, rare, hereditary chronic hemolytic anemia^{1,2}
 - Characterized by mutations in the *PKLR* gene encoding PKR, which is critical for maintaining RBC energy levels and morphology, with defects in PKR causing chronic hemolysis^{1–4}
- Associated with serious complications and a poor quality of life^{3–6}
 - Current management strategies including RBC transfusions and splenectomy, are associated with both short- and longterm risks^{3,7}
 - Regular transfusions are associated with iron overload and end organ damage^{3,7}
- There are no approved disease-modifying drug therapies for PK deficiency

Comorbidities and long-term complications are common and affect multiple organ systems⁶

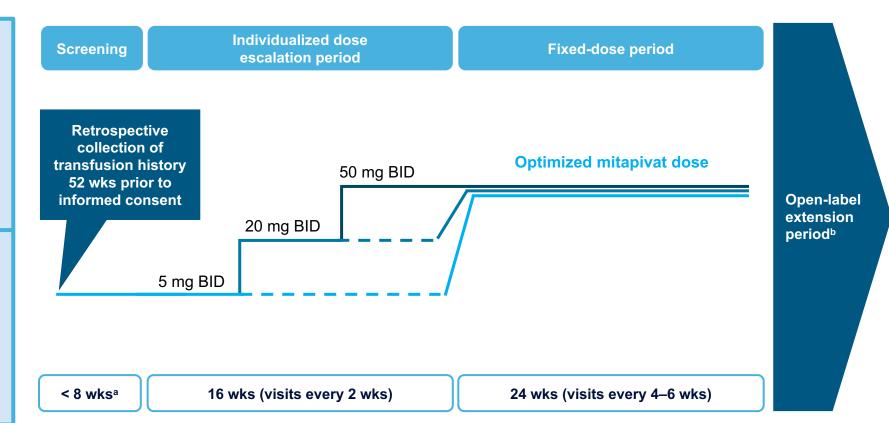
MRI = magnetic resonance imaging; PK = pyruvate kinase; PKR = PK in RBCs; PKLR = gene encoding the pyruvate kinase liver and red blood cell isozymes; RBC = red blood cell.

1. Grace RF, et al. Am J Hematol. 2015;90:825–30; **2.** Zanella A, et al. Br J Haematol. 2005;130:11–25; **3.** Grace RF, et al. Blood. 2018;131:2183–92; **4.** van Beers EJ, et al. Haematologica. 2019;104:e51–e3;

5. Boscoe AN, et al. EJH. 2020;106:484–92; 6. Grace RF, et al. Eur J Haematol. 2018;101:758–765; 7. Grace RF, et al. Br J Haematol. 2019;184:721–34.

Mitapivat, an oral pyruvate kinase activator

ACTIVATE-T was a Phase 3, open-label study that evaluated the efficacy and safety of mitapivat in adult patients with PK deficiency who were regularly transfused


CACTIVATE-T

Key eligibility criteria:

- ≥ 18 yrs of age
- Documented ≥ 2 mutant alleles in *PKLR* (≥ 1 missense mutation)
- \geq 6 transfusion episodes in the past 1 yr
- Complete records of transfusion history for the 52 wks prior to informed consent form
- Adequate organ function

Key exclusion criteria:

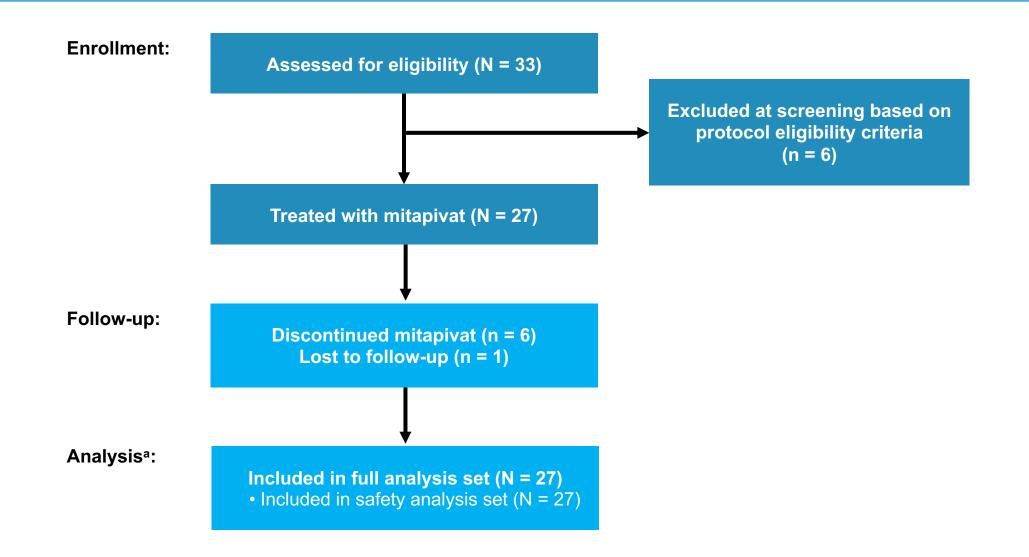
- Homozygous for R479H mutation or have 2 non-missense mutations, without another missense mutation, in *PKLR*
- > 1 transfusion episode every 3 wks in the past 1 yr
- Splenectomy during study, or within 12 months of enrollment

NB: ACTIVATE-T, ClinicalTrials.gov NCT03559699; ^aScreening may be extended beyond 8 wks if there is a delay in obtaining a patient's complete transfusion history or to ensure that the first dose of study drug can be administered 2–7 days after the most recent transfusion; ^bAll patients who remain on study during Part 2 through the Week 24 visit may be eligible for an open-label extension study with mitapivat. BID = twice daily; PK = pyruvate kinase; *PKLR* = gene encoding the pyruvate kinase liver and red blood cell isozymes; wks = weeks; yrs = years.

Primary and secondary efficacy endpoints

Primary Efficacy Endpoint: Achievement of transfusion burden reduction

Defined as a ≥ 33% reduction in the number of RBC units transfused during the fixed-dose period, compared with the
patient's individual historical transfusion burden standardized to 24 wks


Secondary Efficacy Endpoints:

- Annualized total number of RBC units transfused during the study compared with the historical transfusion burden
- Number of transfusion episodes during the fixed-dose period compared with the historical transfusion burden standardized to 24 wks
- Becoming transfusion-free, defined as no transfusions during the fixed-dose period
- Achieving Hb concentrations in the normal range at least once, 8 wks or more after a transfusion in the fixed-dose period

Exploratory Efficacy Endpoints:

- Change in markers of hemolysis including reticulocyte fraction, haptoglobin, LDH and indirect bilirubin
- Change from baseline in PKDIA and PKDD, which are novel PK deficiency-specific patient-reported outcomes (PROs), developed to assess and capture changes in symptom burden and HRQoL impact in PK deficiency
 - For both PROs a higher score indicates more severe disease impact

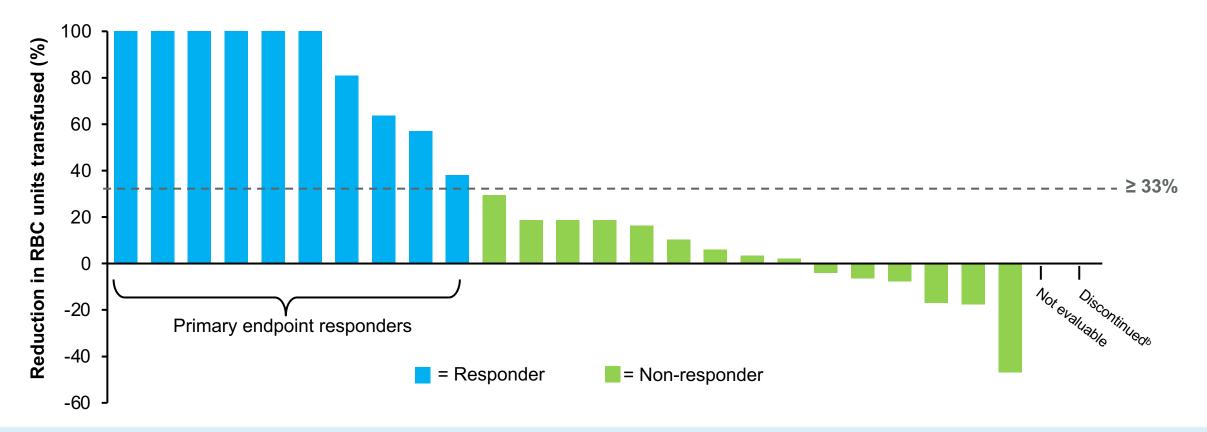
Patient disposition

^aAnalysis set definitions: full and safety analysis sets included all patients who received at least 1 dose of mitapivat.

Patient demographics

Patient demographics	Total (N = 27)
Age (years)	
Median (range)	36.0 (18–68)
< 35, n (%)	13 (48.1)
≥ 35, n (%)	14 (51.9)
Sex, n (%)	
Male	7 (25.9)
Female	20 (74.1)
Race, n (%)	
White	20 (74.1)
Asian	3 (11.1)
America Indian or Alaska Native	0
Black or African American	0
Native Hawaiian or Other Pacific Islander	0
Not reported	4 (14.8)
Region, n (%)	
Western Europe	21 (77.8)
North America	4 (14.8)
Asia	2 (7.4)

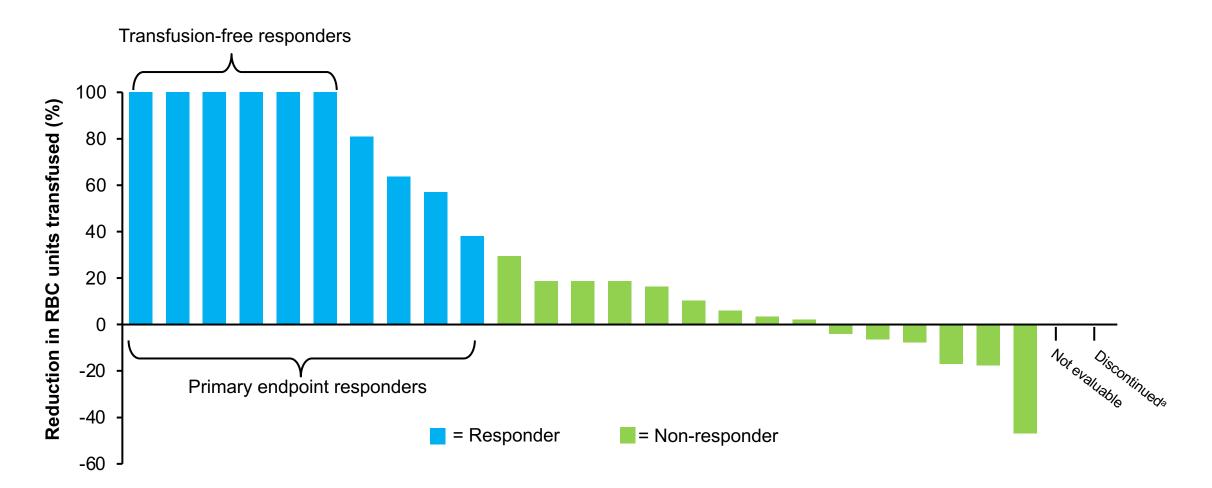
Baseline characteristics	Total (N = 27)
Hb (g/dL), mean (SD)	9.2 (0.98)
Ferritin (μg/L), mean (SD)ª	1153.7 (1221.41)
Prior splenectomy, n (%)	21 (77.8)
Prior cholecystectomy, n (%)	23 (85.2)
Prior chelation therapy, n (%) ^b	24 (88.9)
DXA T-Score, mean (SD) ^c	
Femoral total ^d	-1.1 (0.83)
Adjusted spine	-1.4 (1.17)
PKLR mutation category, n (%)	
Missense/Missense	20 (74.1)
Missense/Non-missense	7 (25.9)


Transfusion history during 52 wks before Informed Consent	Total (N = 27)
No. RBC transfusion episodes ^e , mean (SD)	9.7 (3.62)
No. RBC transfusion episodes ^e , standardized to 24 wks, mean (SD)	4.5 (1.67)
No. RBC transfusion episodes ^e , standardized to 24 wks, category	
≤6, n (%)	22 (81.5)
> 6, n (%)	5 (18.5)
No. RBC units transfused, mean (SD)	16.6 (8.63)
No. RBC units transfused, standardized to 24 wks, mean (SD)	7.7 (3.98)
No. RBC units transfused, standardized to 24 wks, category	
≤ 6, n (%)	12 (44.4)
> 6, n (%)	15 (55.6)

N is the number of subjects who received at least one dose of mitapivat; ^aevaluable patients for baseline ferritin, n = 18; ^bYes' if a patient has received chelation therapy within 52 wks (364 days) before first dose of study treatment; ^cevaluable patients for baseline DXA T-scores and bone mineral densities, n = 26; ^dfemoral neck and total hip combined; ^eTransfusions received over up to 3 consecutive days are counted as one episode. DXA = dual-energy x-ray absorptiometry; Hb = hemoglobin; LDH = lactate dehydrogenase; PKLR = gene encoding the pyruvate kinase liver and red blood cell isozymes; SD = standard deviation; wks = weeks.

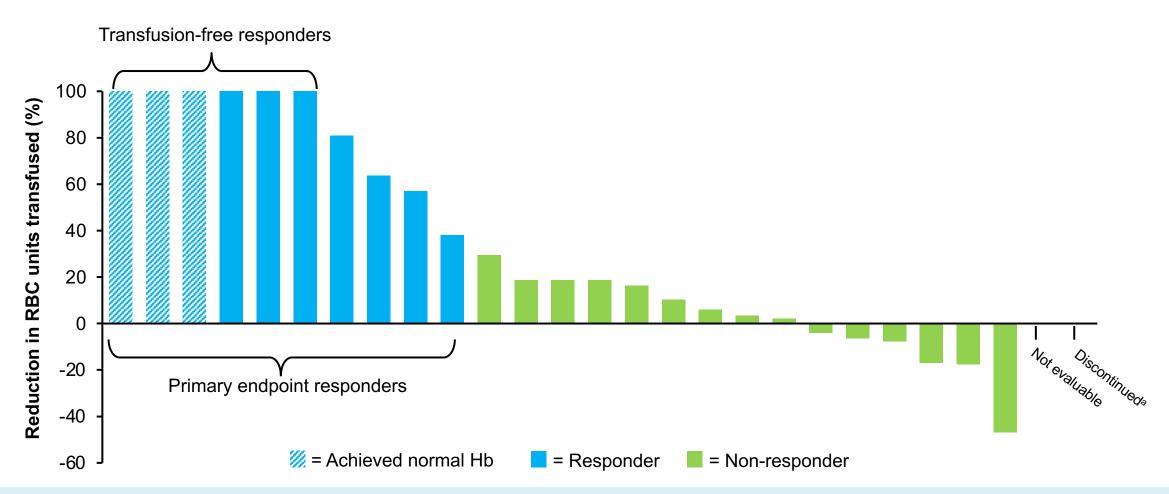
Mitapivat met the primary endpoint, demonstrating a significant reduction in transfusion burden

10 patients (37%; 95% CI: 19–58) achieved a reduction in transfusion burden (1-sided p = 0.0002^a)


9 patients (33%) achieved \geq 50% reduction in total number of RBC units transfused

^aThe p-value is based on the binomial exact test of H0: transfusion reduction response rate $\leq 10\%$ vs. H1: transfusion reduction response rate > 10% at a 1-sided $\alpha = 0.025$; ^bPatients who discontinued the study before completing 12 wks of treatment in the fixed-dose period were considered non-responders CI = confidence interval; RBC = red blood cells.

Transfusion-free responders


6 patients (22%; 95% CI: 9–42) achieved transfusion-free status during the 24 wk fixed-dose period

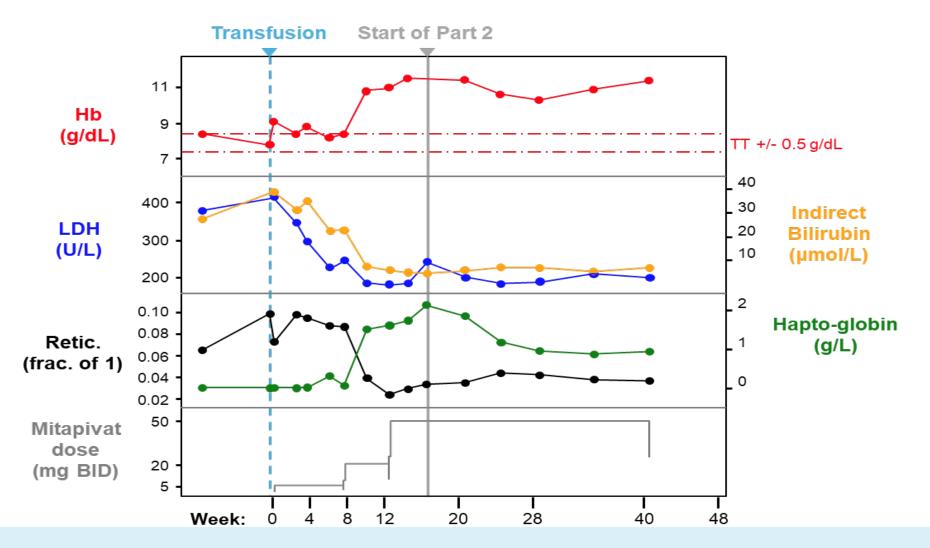
^aPatients who discontinued the study before completing 12 wks of treatment in the fixed-dose period were considered non-responders CI = confidence interval; RBC = red blood cells; wks = weeks.

Hb concentrations in normal range

3 patients (11%; 95% CI: 2–29) achieved Hb concentrations in the normal range at least once 8 weeks or more after transfusion in 24 wk fixed-dose period

^aPatients who discontinued the study before completing 12 wks of treatment in the fixed-dose period were considered non-responders CI = confidence interval; RBC = red blood cells; wks = weeks.

	Historical (standardized to 24 wks) (n = 27)	On-treatment ^a ^(24 wks) (n = 26)	% Reduction ^b
Number of transfusion episodes, Mean (SD)	4.46 (1.669)	2.88 (2.694)	39.57 (44.424)
RBC units transfused, Mean (SD)	7.68 (3.981)	5.40 (5.739)	37.09 (46.804)


Similar improvements were seen when comparing annualized RBC units transfused

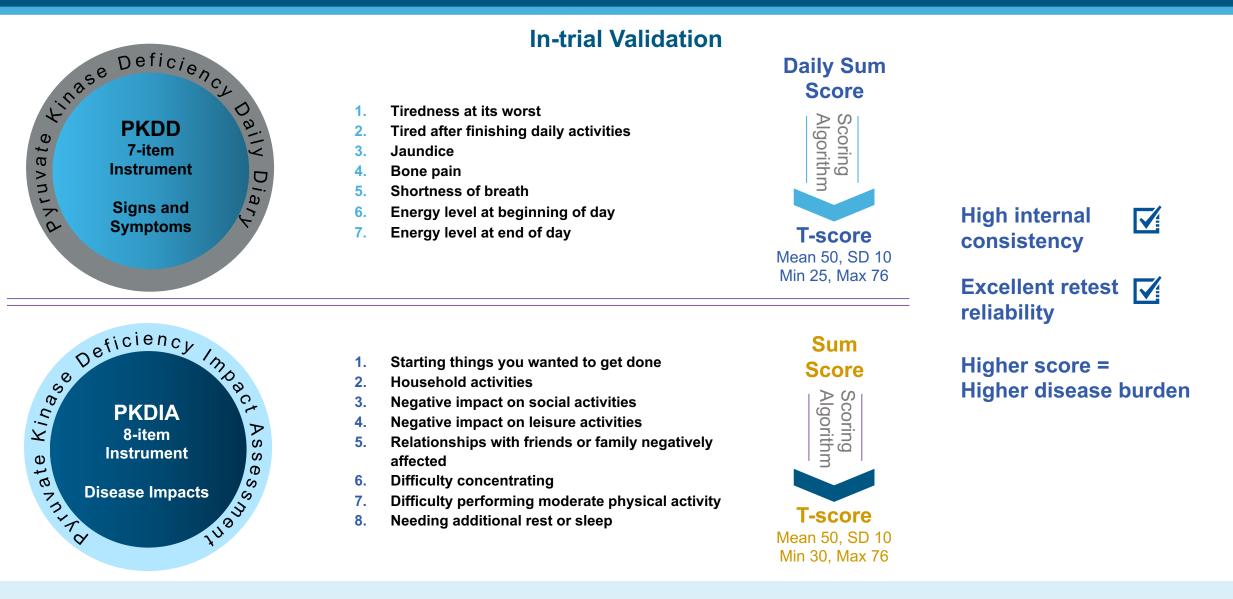
13

NB: Transfusions received over up to 3 consecutive days were counted as one episode. Both historical transfusion episodes and number of transfusion episodes during the Fixed-Dose period (Part 2) were standardized to 24 wks. ^aDuring the fixed-dose period; ^bDefined as percent reduction in the number of RBC units transfused during the fixed-dose period compared with the patient's individual historical transfusion burden standardized to 24 wks. RBC = red blood cells; SD = standard deviation; wks = weeks.

Mitapivat has the potential to normalize Hb levels and improve markers of hemolysis in transfusion-free responders

Hb and hemolysis markers over time in a transfusion-free^a responder:

^aDefined as a patient who was tranfusion-free during the Fixed-Dose period (Part 2).


BID = twice daily; Hb = hemoglobin; LDH = lactate dehydrogenase; Retic = reticulocyte/erythrocyte, fraction of 1; TT = transfusion trigger.

The benefit of mitapivat on the primary endpoint of reducing transfusion burden was seen across patient subgroups

Characteristic	Subgroup	Response rate, % (n/N)ª	Transfusion reduction response rate (95% CI) ^{a,b}
Overall study population ^a :		37.0 (10/27)	
Age at screening:	< 35 years ≥ 35 years	38.5 (5/13) 35.7 (5/14)	
Sex:	Male Female	28.6 (2/7) 40.0 (8/20)	
Race:	White Asian Other	35.0 (7/20) 33.3 (1/3) 50.0 (2/4)	
PKLR mutation category:	Missense/Missense Missense/Non-missense	45.0 (9/20) 14.3 (1/7)	
Baseline individual transfusion trigger:	< 8.5 g/dL ≥ 8.5 g/dL	41.7 (5/12) 33.3 (5/15)	
Individual historical transfusion burden, number of episodes ^c :	≤ 6 episodes > 6 episodes	40.9 (9/22) 20.0 (1/5)	
Individual historical transfusion burden, number of RBC units ^c :	≤ 6 units > 6 units	41.7 (5/12) 33.3 (5/15)	
Prior splenectomy:	Yes No	23.8 (5/21) 83.3 (5/6)	
		(0 10% 20% 40% 60% 80% 100%

^aTransfusion reduction responders defined as patients who had \geq 33% reduction in the number of RBC units transfused during the fixed-dose period standardized to 24 wks compared with the historical number of RBC units transfused standardized to 24 wks; ^bThe estimated 95% CI is based on the exact binomial distribution; ^cDuring the 52 wks before Informed Consent, standardized to 24 wks'. CI = confidence interval; PKLR = gene encoding the pyruvate kinase liver and red blood cell isozymes; RBC = red blood cell; wks = weeks.

PKDD and PKDIA were developed to assess and capture changes in symptom burden and HRQoL impact in patients with PK deficiency

Improvement in signs, symptoms, and disease impacts was observed throughout the study based on the PKDD and PKDIA

PRO Score by study visit	Total (N = 27)	
PRO Score by study visit	PKDD	PKDIA
Baseline		
n	24	24
Mean (SD)	51.9 (8.51)	52.6 (7.88)
Change from baseline, dose escalation period Week 12		
n	23	23
Mean (SD)	-5.3 (11.63)	-4.9 (9.97)
Change from baseline, fixed-dose period Week 12		
n	17	17
Mean (SD)	-3.6 (12.22)	-6.0 (12.30)
Change from baseline, fixed-dose period Week 24		
n	14	14
Mean (SD)	-2.4 (11.30)	–9.1 (11.50)

N is the number of subjects who received at least one dose of mitapivat; n shows how many subjects are included at each visit. PK = pyruvate kinase; PKDD = PK deficiency diary; PKDIA = PK deficiency impact assessment; SD = standard deviation.

Mitapivat was well tolerated and adverse events were consistent with previously reported data

Patients, n (%)	Total (I	N = 27)	
Any TEAE	27 (*	100)	
Grade ≥ 3 TEAE	8 (29	8 (29.6)ª	
Treatment-related TEAEs	18 (6	18 (66.7)	
Grade ≥ 3 treatment-related TEAEs	2 (7.4)		
Serious TEAEs	3 (11.1)		
Serious treatment-related TEAEs	0		
TEAEs leading to discontinuation of study drug	0		
TEAEs leading to dose reduction of study drug	1 (3.7)		
TEAEs leading to interruption of study drug	0		
TEAEs leading to death	0		
Most common TEAEs (occurring in ≥ 15%)	Any grade	Grade ≥ 3	
ALT increased	10 (37.0)	0	
Headache	10 (37.0)	0	
AST increased	5 (18.5)	1 (3.7)	
Fatigue	5 (18.5)	0	
Nausea	5 (18.5)	0	

- The majority of TEAEs were Grade 1 or 2
- Two patients experienced Grade 3 treatmentrelated TEAEs^a
 - AST increase; joint swelling
- There were no TEAEs leading to death and no patients discontinued or interrupted treatment due to an AE

NB: N is the number of subjects who received at least one dose of mitapivat; TEAEs classified according to MedDRA version 23.1; all assessments are based on investigator assessment; aNo Grade ≥3 AE was reported in more than one patient.

ALT = alanine aminotransferase; AST = aspartate aminotransferase; MedDRA = Medical Dictionary for Regulatory Activities; TEAE = treatment-emergent adverse event.

- ACTIVATE-T was the first clinical study in patients with PK deficiency who are regularly transfused and demonstrated that mitapivat is an effective therapy for reducing transfusion burden in this population
 - 37% of patients achieved a transfusion reduction response in fixed-dose period
 - 22% of patients were transfusion-free during the fixed-dose period
 - 11% of patients achieved normal Hb concentrations during the fixed-dose period
 - PK deficiency-specific quality of life measures demonstrated improvements
- Mitapivat was well tolerated, and safety profile was consistent with previously reported data

Acknowledgements

- We would like to thank the patients taking part in this study
- This study was funded by Agios Pharmaceuticals, Inc.
- Editorial assistance was provided by Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.